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Abstract Invasive weed optimization (IWO) is a recently

published heuristic optimization technique that resembles

other evolutionary optimization methods. This paper pro-

poses a new classification technique based on the IWO

algorithm, called the invasive weed classification (IWC), to

face the problem of pattern classification for multi-class

datasets. The aim of the IWC is to find the set of the

positions of the class centers that minimize the multi-

objective function, i.e., the optimal positions of the class

centers. The classification performance is computed as the

percentage of misclassified patterns in the testing dataset

achieved by the best plants in terms of fitness performance.

The performance of the IWC algorithm, both in terms of

classification accuracy and training time, is compared with

other commonly used classification algorithms.

Keywords Pattern recognition � Invasive weed

classification � Optimization

1 Introduction

In machine learning, pattern recognition is the task of

assigning a label to each given input pattern. There exist

two fundamental approaches for pattern recognition:

unsupervised learning and supervised learning.

The first approach, usually called clustering, is to par-

tition a given set of unlabelled patterns into groups con-

taining similar patterns. In the latter, commonly called

classification, a set of patterns (the so-called training set)

with pre-assigned labels are used for learning. Therefore,

classification maps a pattern from the feature space to a

pre-defined class in the decision space. This mapping can

then be used for the classification of upcoming new

patterns.

Classification techniques vary in the learning mecha-

nism and in the representation of the learned model. Early

work on pattern classification was focused on constructing

a set of discriminant functions [23], based on a set of

training patterns, in order to classify among the pre-

defined groups by the assigned classes.

Contemporary statistical approaches for pattern classi-

fication are mainly based on distances in the feature space,

as is the case, for example, in the k-nearest neighbors

method [18], or in the Bayesian classification, where one

estimates the joint distribution of the features within each

class [24], or in the classification tree-based analysis [12],

where one tests one or more predictor variables.

Other popular pattern classification methods are rule-

based learning methods [3] (including here fuzzy rule-based

classification systems such as [41]), neural networks [11],

support vector machines [33], neuro-fuzzy networks [46],

evolutionary computing-based classifiers [6], instance-

based learning systems [42], rough set-based systems [28],

ensemble of classifiers [31, 35, 55, 56, 59, 60, 63].
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Conversely, the problem of pattern classification can be

simply considered as a multivariable optimization problem.

Indeed, each class prototype corresponds to a centroid in a

multi-dimensional feature space. Thus, the problem of pat-

tern classification can be reformulated such that to find the

optimal positions of all the class centroids, or more explic-

itly to determine optimal coordinates of each centroid.

There exist in the literature a few papers in which

optimization techniques are used as a classification tool [6,

7, 13, 15, 21, 22, 48–53, 66–68].

The above-mentioned references indicate that optimi-

zation techniques are proper and effective techniques for

implementing classification tasks and that they can be

effectively applied to many problem domains. Yet there are

no papers using invasive weed optimization as a classifi-

cation technique.

Much work has been devoted to the invasive weed

optimization (IWO) since the proposal of the algorithm in

[44], but this mainly concerned function optimization [26,

27, 47, 61] and not pattern classification. More recently, a

newer attempt that seeks to apply IWO to more diversified

areas has also appeared [16].

This paper presents a novel method for pattern classifi-

cation in multi-class datasets based on the analogy with the

weed colonization process in nature.

The structure of the paper is as follows. Section 2

describes the IWO algorithm background and basic scheme,

while Sect. 3 illustrates the proposed IWC version applied

to a classification problem. The basic concepts of seeding,

growth and competition that are analogous to what happens

in a weed colony are utilized in this algorithm. Section 4

reports a performance study of the proposed classification

approach, conducted on different challenging test datasets,

and it discusses the results achieved and the comparison

against well-known classification techniques. Finally, Sect.

5 presents some conclusions and ideas for future work.

2 Invasive weed optimization (IWO)

In this work, the IWO algorithm is used to find the optimal

positions or coordinates of the class centroids with respect to

a pre-defined multi-objective function. A comparative eval-

uation of the proposed IWC algorithm and other well-known

classification algorithms is carried out in order to validate the

appropriateness of the IWC as a pattern classifier.

2.1 Background and applications

The Invasive Weed Optimization (IWO) algorithm is a bio-

inspired numerical optimization algorithm that simulates

the behavior of weeds in nature when colonizing and

finding a suitable place for growth and reproduction [44].

Since the earliest development for the optimization and

tuning of a robust controller, IWO has been extensively

used in a variety of practical applications, such as plant-

wide performance optimization [26, 27, 61], development

of a recommender system [54], optimal positioning of

piezoelectric actuators [45], optimal tuning of thresholds

for new class fault detection [62], cooperative identification

and adaptive control of a surge tank [30], electromagnetics

and antenna configuration [34], cooperative multiple

task assignment of the Unmanned Aerial Vehicles [25],

clustering [16], analysis of electricity markets dynamics

[29, 47].

2.2 Invasive weed optimization algorithm

Before presenting the IWO algorithm in detail, we first

define the key terms and concepts used in this algorithm

[34, 44].

Seed each individual in the colony that includes a value

for each variable in the optimization problem prior to fit-

ness evaluation.

Fitness a value that represents the merit of the solution

for each seed.

Weed/Plant each evaluated seed grows to a flowering

plant or weed in the colony. Therefore, growing a seed to a

plant corresponds to evaluating an individual’s fitness.

Colony the set of all seeds.

Population size the number of plants in the colony.

Maximum weed population a pre-defined parameter that

represents the maximum allowed number of weeds in the

colony posterior to fitness evaluation.

The following steps are considered to imitate the colo-

nizing behavior of weeds [34, 44]:

1. Search space definition Initially, the number of

parameters that need to be optimized has to be defined,

hereafter denoted by D. Next, for each parameter in the

D-dimensional search space, a minimum and maxi-

mum values are assigned.

2. Population initialization A limited number P0 of initial

seeds, W ¼ w1;w2; . . .;wP0
f gT

are being randomly

spread through the defined search space. Consequently,

each seed catches a random position in the D-

dimensional search space [44].

3. Fitness estimation A value is assigned to each initial

seed by the fitness function J, which represents the

goodness of the solution [34]. Here, initial seeds grow

up to flowering plants.

4. Ranking and reproduction The flowering plants are

firstly ranked based on their assigned fitness values

relative to others. Subsequently, the flowering plants in

the colony will produce a number of new seeds

depending on their rank; i.e., the number of seeds
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produced by each plant increases linearly from the

minimum possible seeds production, Smin, to its

maximum, Smax, based on its own fitness value, as

well as the lowest and the highest fitness values in the

colony.

Hence, the plants with higher fitness value, which are more

adapted to the environment, can produce more seeds that

will solve the problem better [34]. More precisely, the

number of seeds to be created by each plant is computed as

follows:

Si ¼
Fi � Fmin

Fmax � Fmin

Smax � Sminð Þ þ Smin

� �
ð1Þ

where Fi is the fitness of the i-th plant. Fmin and Fmax stand

for the lowest and highest fitness values in the weed pop-

ulation. Therefore, this step guarantees cooperation of

every weed in the reproduction procedure. Note that Smax

and Smin are pre-defined parameters of the algorithm and

adjusted according to the structure of the problem. Further

details about this strategy can be found in [44].

5. Spatial dispersal This part of the algorithm introduces

some randomness in the search process and provides

adaptation [44]. Here, the seeds are being randomly

scattered through the search space by using normally

distributed numbers with zero mean and adaptive

standard deviations [44] as follows:

ws j½ � ¼ w j½ � þ N 0; r2
iter

� �
ð2Þ

where, w½j� indicates the j-th variable of a solution vector

in the current iteration and ws½j� shows the j-th variable of

its s-th seeds. The standard deviation riter at the present

time step can be computed adaptively according to the

following equation [44]:

riter ¼
itermax � iterð Þn

itermaxð Þn rinitial � rfinalð Þ þ rfinal ð3Þ

where rinitial and rfinal denote the pre-defined initial and

final standard deviations, respectively. itermax indicates the

maximum allowed number of iteration cycles and n is the

nonlinear modulation index [44] assigned by the user. The

riter can be reduced from the rinitial to the rfinal with dif-

ferent velocities in accordance with the chosen nonlinear

modulation index, n.

Initially, the whole search space can be explored by the

algorithm due to the high value of initial standard deviation

rinitial. Then, the standard deviation riter is gradually

reduced by increasing the number of iterations, to focus the

search around the local minima or maxima to find the

global optimum. This gradual reduction guarantees to

collect only fitter plants and to discard plants with lower

fitness. The produced seeds, along with their parents, are

considered as the potential solutions for the next

population.

6. Competitive exclusion After passing a number of

iterations, the population size reaches its pre-defined

maximum ðPmaxÞ by fast reproduction and, conse-

quently, a mechanism for discarding the plant with low

fitness will be activated. To this end, the seeds and

their parents are ranked together and those with higher

fitness survive and subsequently reproduce new seeds

in the next iteration.

7. Termination condition The plants that survived in the

next generation will continue to produce new seeds

depending on their fitness rank in the colony. The

procedure is repeated at step 3 until either the

maximum allowed number of iterations has been

reached or the fitness criterion has been met [34].

A pseudocode version of the IWO algorithm is given in

Fig. 1 [45].

3 Invasive weed classification

Let us assume a multi-class dataset with C classes, where N

features are available for the classification. The classifica-

tion problem is the task of finding the optimal positions of

C centroids in an N-dimensional feature space, i.e., finding

out the N coordinates of each centroid. Invasive weed

optimization offers a potentially valid framework to handle

such classification task.

The IWO algorithm (see Fig. 2) is the cornerstone of the

IWC algorithm. Thus, to develop the IWC algorithm, the

key parameters of the IWO algorithm are firstly set (see

Table 2). The initial population is adopted and initialized

according to the available data (see Sect. 3.1), and multiple

objective functions are defined (see Sect. 3.2) to meet the

goal of the classification task.

To perform the classification task, a multi-objective

function has been defined, as described in this subsec-

tion. For each upcoming dataset, we use cross-validation,

and thus, in each iteration of cross-validation, the ori-

ginal dataset is divided into train, validation and test

sets:

Dtrain ¼ x1; y1ð Þ; . . .; xp; yp

� �
; . . .; xmtrain

; ymtrain
ð Þ

� �
Dvalid ¼ x1; y1ð Þ; . . .; xp0 ; yp0

� �
; . . .; xmvalid

; ymvalid
ð Þ

� �
Dtest ¼ x1; y1ð Þ; . . .; xq; yq

� �
; . . .; xmtest

; ymtest
ð Þ

� � ð4Þ

where xp; xp�; xq 2 X
� �

are patterns along with their cor-

rect labels yp; yp�; yq 2 Y
� �

, Y � x1; . . .;xc; . . .;xCf g, xc

are classes, p ¼ 1; . . .;mtrain, p�¼ 1; . . .;mvalid, and

q ¼ 1; . . .;mtest.
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3.1 Initialization

At the beginning, the cluster centroids are some initial

seeds, which are randomly spread within the N-dimen-

sional feature space. The IWC evaluates and manipulates

iteratively the seeds (the initial random cluster centroids)

based on their fitness and finally converges to the optimal

position of the cluster centroids. Thus, the optimal posi-

tions of the cluster centroids are those of the most fitted

seeds, which minimize the multi-objective performance

functions.

With these assumptions, a limited number P0 of initial

seeds W ¼ w1;w2; . . .;wP0
f gT

are being randomly spread

across the defined N-dimensional feature space. Each

individual seed wi is encoded by C centroids as follow:

wi ¼ w1
i ; . . .;wC

i

� �
ð5Þ

Consequently, each seed catches a random position in the

N-dimensional feature space, i.e., wc
i for the cth centroid

comprises N real values. Each value corresponds to one

coordinate in the N-dimensional feature space:

wc
i ¼ wc

i;1; . . .;wc
i;N

n o
ð6Þ

Thus, each seed in the colony comprises C � N real values.

3.2 Multi-objective optimization

The task of multi-objective optimization is to optimize

multiple conflicting objective functions concurrently, sub-

ject to a set of pre-assigned constraints. The problem can

be reformulated as one where the goal is to optimize a

given set J of h objective functions J1; J2; . . .; Jh with

respect to a set of l variables a ¼ ½a1; a2; . . .; al�:

Fig. 1 The pseudo-code for the IWO algorithm [45]
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Fig. 2 The multi-criteria function f ðevÞ
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minimize
a

ðJ1ðaÞ; J2ðaÞ; J3ðaÞ; . . .; JhðaÞÞ

subject to : gnðaÞ� 0

hfðaÞ ¼ 0

alower� a� aupper

ð7Þ

where gnðaÞ and hfðaÞ stand for the n-th and f-th inequality

and equality constraints, respectively. Besides each

parameter can be constrained between a lower and an upper

bound, alower and aupper, respectively.

A set of possible solutions in the objective space is

called Pareto optimal, if there does not exist another

solution that dominates it. The vector a is a non-dominated

solution if for any other possible objective vector, a�:

JnðaÞ� Jnða�Þ; 8n ¼ 1; 2; 3; . . .; h ð8Þ

and at least there is an objective such that:

JfðaÞ 	 Jfða�Þ; f 2 1; 2; 3; . . .; h ð9Þ

Dominance can be indicated as JðaÞ 	 Jða�Þ. The set of

Pareto optimal solutions is often called the Pareto front.

3.2.1 Class-based objective function

To define the multi-objective function in our case, different

optimization goals have been considered. The first objec-

tive function, Jc, is a class-oriented function. It is calcu-

lated based on the fitness of the individual seeds in the

population, which are randomly spread through the feature

space and each one corresponds to a set of positions of the

C centroids, c ¼ 1; . . .;C. Any pattern in the training set is

assigned to the class with the nearest possible centroid in

the N-dimensional feature space.

A misclassified pattern x~p is simply one pattern assigned

to a class xassignedðx~pÞ, different from the true class,

xtrueðx~pÞ, stored in the training set. Then, the fitness of the

ith seed in the colony is calculated as:

Jc ið Þ ¼ 1

mtrain

Xmtrain

p¼1

k x~p

� �
ð10Þ

where mtrain in the above equation stands for the number of

patterns in the training set and k x~p

� �
is defined as follows:

k x~p

� �
¼

1 if xassignedðx~pÞ 6¼ xtrueðx~pÞ
0 otherwise

�
ð11Þ

Note that Jc varies in the interval ½0; 1�.

3.2.2 Distance-based objective function

Another objective function can be defined as a distance-

based function, Jd. It is calculated as an average of the

Euclidean distances:

Jd ið Þ ¼ 1

mtrain

Xmtrain

p¼1

d x~p;w
xtrue x~pð Þ
i

	 

ð12Þ

In the above equation, x~p stands for the p-th generic pattern,

in the training set of size mtrain that belongs to the class

xtrue x~p

� �
and w

xtrue x~pð Þ
i is the current position of the related

centroid of class xtrue x~p

� �
in the training set that is taken by

the i-th seed in the N-dimensional feature space. Both x~p

and w
xtrue x~pð Þ
i are N-dimensional vectors.

The Euclidean distance d in Jd is calculated in such a

way that the components of x~p and w
xtrue x~pð Þ
i are first nor-

malized with respect to their maximum range and conse-

quently the sum is divided by N.

The normalization helps to preserve the range of vari-

ation in the distance within the interval 0; 1½ �.
The class-based objective function Jc is defined so that it

can vary in discrete increments of 1=mtrain (generally as we

move further from the cluster center), while the distance-

based objective function Jd is more continuous. This

implies that the Jc is not very sensitive to centroid posi-

tions, and small variations in the centroid positions might

not lead to a change in the class membership. Conse-

quently, the percentage of misclassified patterns remains

constant. Conversely, the Jd is very sensitive to the cen-

troid positions and can vary with respect to small variations

in the centroid positions.

3.2.3 The multi-objective function

The two pre-described class and distance-based objective

functions, Jc and Jd, are separately computed and linearly

combined to form the multi-objective function as follows:

J ið Þ ¼ 1

h

Xh

v¼1

JvðiÞ ¼
1

2
JcðiÞ þ JdðiÞ½ � ð13Þ

where the two terms Jc and Jd are given equal weights, and

J also varies in the range [0, 1].

3.2.4 The overtraining problem

The IWC has the potential to overfit the training set

because its objective is to minimize the error on the

training set. There is an increasing potential to overtrain the

data containing higher rate of noise. This section focuses

on alleviating the overfitting and on improving the per-

formance by means of validation sets.

The basic idea to overcome the overfitting problem is to

use a subset of data different from the training set, called

validation set, and calculate the classification performance

over the validation set.
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The training focuses on learning a small hypothesis

feature space, and the validation set includes a hypothesis

from that feature space. Thus, in a large feature space,

merely minimizing the training error leads to overtraining.

In particular, the so-called ‘k-fold’ cross-validation [19,

20, 36] is used to split the data into train, validation and test

subsets as shown in Sect. 3. Here, the stratified k-fold cross-

validation algorithm is used to prevent creating imbalanced

data-subsets that can degrade the performance of the clas-

sifiers. The detailed explanation can be found in [65].

The IWC performance does not depend significantly on

the selection of the parameter k: experiments not reported

in the paper show that one gets slightly different results for

different k values. In general, the choice of k, for instance

k ¼ 10 as used in this work, is somewhat arbitrary. k can be

a divisor of the sample size or the size of the samples of the

same groups that should be stratified. First of all, in order to

lower the variance of the cross-validation result, one can

repeat/iterate the cross-validation with new random splits.

Ideally one can choose a very large k, but there is also a

risk to be biased. Moreover, a very large k needs more

computation time. The trade-off between the bias and the

variance in cross-validation is studied in [64].

In this work, the k is set to 10 except for the very small

size datasets (e.g., small size Gaussian dataset), which have

less than 10 samples per class. In this case, a divisor of the

sample size of the smallest group is used for the stratified

cross-validation.

The original dataset is partitioned into k blocks of equal

size. Cross-validation is performed by means of stratified

sampling, where the class distribution in each fold is

approximately the same as in the initial dataset [65]. Two

of these blocks are used as validation and test subsets, and

the remaining k � 2 blocks are combined together to form

the training data subset. The cross-validation iteration is,

then, repeated k times (the k-folds) using a different block

as test set each time and consequently the IWC algorithm is

repeated k times, each time with a different subsets.

A validation test set is devised to find out whether an

optimal set of solution ‘seeds’ may cause overfitting. Each

classifier trained by an individual set of optimal solutions

‘seed’ is then evaluated by the validation set. The perfor-

mance evaluation on the validation set has been used as a

factor to control the overtraining problem. Thus, the pro-

posed term for the modification of the multi-objective

function is an error-based objective function, Je.

Here, we try to control the overtraining problem with

respect to the validation error ev such that the individual

seed in the feature space receives the maximum penalty

equal to 1, if the validation error takes a value outside of a

closed interval of ½0:1; 0:5�. For the centroids with the

ev 2 ½0:1; 0:5�, the f ðevÞ follows a Gaussian distribution

defined as:

f ðevÞ ¼ 1� e
�ðev�0:3Þ2

2� 0:42 ¼ e
�ðev�0:3Þ2

0:32 ð14Þ

where f ðevÞ with ev 2 ½0:1; 0:5� follows a Gaussian ‘bell

curve’ function that quickly falls toward zero. The height

of the curve peak is 1, the center of the peak is located at

0:3, and the standard deviation that controls the width of

the bell to be equal to 0.4 corresponds to ½0:1; 0:5�. The

domain of the f ðevÞ is between 0 and 1 since this is an

error-based function, and the range of the function for the

values ev in the domain and outside of the closed interval

½0:1; 0:5� is equal to zero. The multi-criteria function f ðevÞ
is defined as follows:

f ðevÞ ¼
0 if 0 	 ev 	 0:1

e�ðev�0:3Þ2=0:32 if 0:1� ev� 0:5

0 if 0:5 	 ev 	 1

8><
>: ð15Þ

The f ðevÞ is shown in Fig. 2.

Each pattern in the validation set Dvalid is assigned to a

class, that is the class with the nearest centroid in the N-

dimensional feature space. Then, the validation error is

calculated as a percentage of misclassified patterns with

respect to the real label stored in Dvalid, which is described

as follows:

ev ið Þ ¼ 1

mvalid

Xmvalid

p�¼1

k x~p�

� �
ð16Þ

where mvalid in the above equation stands for the number of

patterns in the validation set and k x~p�

� �
is a function of two

criteria defined as follows:

k x~p�

� �
¼ 1 if xassigned x~p�

� �
6¼ xtrue x~p�

� �
0 otherwise

�
ð17Þ

Having evðiÞ, the function f ðevÞ is calculated based on the

equation (15). Consequently, Je is computed as follow:

Je ið Þ ¼ 1� f ðevÞ ð18Þ

To control the overtraining problem, a proper range of

variation in the validation error ev 2 ½0:1; 0:5� has been

devised to indicate whether a classifier is overtrained or

weak-learned, and then, we control the fitness of the cor-

responding wi representing C centroids in the population.

The parameters in equation 15 are selected properly to

form the multi-criteria function, as displayed in Fig. 2.

Having the defined multi-criteria function, the fitness JeðiÞ
of the seeds (i.e., cluster centroids) that leads to an error ev

higher than 0.5 or less than 0.1 is increased. On the con-

trary, the fitness JeðiÞ of the seeds with 0:1\ev\0:5 (i.e.,

those that are not weak or not overtrained) is decreased

exponentially, which minimizes the performance function.

Indeed, other types/shapes of multi-criteria functions fðevÞ
can be defined, such as triangular, etc.
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The error-based objective function Je increases the fit-

ness of an overtrained or very weak-learned classifier; on

the other hand, it decreases the fitness of a classifier that

performs particularly well on the validation set and its

validation error falls into the pre-devised range of

½0:1; 0:5�. The modification term Je is added to the multi-

objective function, forming a modified function, called J0

as follows:

J0 ið Þ ¼ 1

h

Xh

v¼1

JvðiÞ ¼
1

3
JcðiÞ þ JdðiÞ þ JeðiÞ½ � ð19Þ

The constructing terms of the equations 13 and 19 (i.e., Jc,

Jd, Je) can vary in the interval [0,1]. All these terms are

given equal weights in J and J0. In order to keep the same

range of variation (i.e., [0,1]), the equal weights of 1
2

and 1
2

(1
3
, 1

3
, 1

3
) are given to the Jc and Jd (Jc, Jd, Je) in J (J0),

respectively. However, one can increase or decrease the

weights to give higher priority to the term of choice. The

effect of unequal weights will be studied in future research.

As a result of the choice of these two different multi-

objective functions J and J0, two different invasive weed

classifiers have been designed IWC�J and IWC�J0,
respectively. In the former, the focus is to optimize the

position of the centroids in the N-dimensional feature space

based on the training set Dt; in the latter, a mechanism has

been also devised to control the overtraining.

The test performance either in IWC� J and IWC� J0

is, then, computed as the percentage of misclassified pat-

terns in the test set Dtest by the best individual seed (i.e., the

fittest seed). Resorting to cross-validation and test perfor-

mance, the IWC� J and IWC� J0 outcomes can be

compared each other and against other well-known clas-

sification algorithms.

With the choice of the proposed multi-objective func-

tions J and J0, the classification task turns out to be a

classical optimization problem.

4 Experimental results

In this section, different versions of invasive weed classi-

fiers are firstly compared to each other and, then, compared

to well-known classification techniques with respect to the

classification of artificial datasets of different size and

complexity, including the challenging artificial 3-spirals

and other real-world datasets. A summary of the datasets

characteristics (i.e., number of classes C, number of fea-

tures N, number of patterns m ¼ mtrain þ mvalid þ mtest and

number of patterns per class mc) is reported in Table 1.

The datasets have no missing values (dealing with

missing values is not the focus of this work). The following

datasets have been considered. Firstly, we focus on the size

of the datasets, and four datasets with different number of

patterns are generated from a Gaussian distribution: a small

Gaussian dataset constituted by four classes and 30 pat-

terns; two medium size Gaussian datasets (i.e., indexed

with a and b in the second and third rows of the Tables 1, 3

and 4) formed by 60 and 120 patterns, respectively; a large

Gaussian dataset constituted by 1,500 patterns. All these

four Gaussian datasets are randomly sampled from a

Gaussian distribution. This latter dataset deals with a large

number of patterns, with the advantages of having only two

features.

Next, four well-known datasets in literature (i.e., Iris,

Wine, Glass and Statlog Heart) taken from the UCI data-

base repository [4] are used for classification. The number

of features and classes are partially increased in these

datasets.

Cone-torus dataset has 800 bi-dimensional patterns of

three classes, generated from three differently shaped dis-

tributions with prior probabilities 0:25, 0:25 and 0:5,

respectively [39]. This dataset is available as two different

subsets for train and test, which are combined here to form

a unique dataset for cross-validation.

A 3-spirals dataset contains 1,200 bi-dimensional pat-

terns of three classes as shown in Fig. 3, exhibiting com-

plex cluster shapes. This dataset is considered because of

its complex decision boundaries.

Weaning is a real medical dataset [37], consisting of 302

patterns and 17 features representing two classes of

patients distinguished as not ready/ready for weaning from

mechanical ventilation.

Laryngeal is a real medical dataset [37], which contains

353 patterns of three classes representing normal/organic

pathological/functional pathological voices. The set was

originally used for diagnosing Laryngeal pathology in its

early stages. The main difficulties with this dataset are to

Table 1 Description of the datasets used in the experiments

C N m mc

Small size Gaussian 4 2 30 15–5–5–5

Medium size Gaussiana 2 2 60 30–30

Medium size Gaussianb 2 2 120 60–60

Large size Gaussian 3 2 1,500 500–500–500

Iris 3 4 150 50–50–50

Wine 3 13 178 48–71–59

Glass 6 9 214 70–17–76–13–

9–29

Statlog (heart) 2 13 270 150–120

Cone-torus 3 2 800 207–198–395

3-Spirals 3 2 1,200 400–400–400

Weaning 2 17 302 151–151

Laryngeal 3 16 353 53–218–82
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deal with the large number of features and imbalanced

distribution of patterns between classes. However, this work

does not focus on classification of class-imbalanced data.

The datasets are properly selected such that the number

of patterns and features, number of classes, class distribu-

tion, noise level, correlation of features, decision bound-

aries and other characteristics vary to provide an adequately

different and relatively complete classification benchmark.

The current version of the IWC just handles numerical

data. It is possible for the IWC to classify categorical data,

but the objective function should be modified. For instance,

one can modify the distance-based objective function and

define a distance measure based on co-occurrence of values

instead of the Euclidean distance [2]. Albeit classification

of the categorical datasets was not the aim of this paper, the

distance-based objective function can be modified to han-

dle these datasets as well, and we will address this in our

future research.

4.1 IWC�J versus IWC�J0

The IWC has some key parameters that impact on its

performance. These parameters are tuned a priori, by rule

of thumb, to guarantee good classification performance.

The key parameters of concern and their proper values to

perform the classification task are listed in Table 2.

The evolutions of the fittest individuals in the colony

calculated by IWC� J and IWC� J0 as a function of the

number of iterations during an arbitrary cycle of cross-

validation are shown in Fig. 4 for the case of large size

Gaussian dataset.

The evolutionary profiles of the fittest individuals for

IWC� J and IWC� J0 show significant reductions in the

first 60 iterations and then a linear decrease with much

lower slopes that last until iteration 300. The value of the

fittest individuals calculated by IWC� J and IWC� J0 are

4.1 and 2.78, respectively, at the first iteration and reach to

0.52 and 0.49 in iteration 300. Albeit from iteration 60 to

300, the fittest individuals in IWC� J and IWC� J0 have

very close values, it is not expected that they converge to a

same value, since IWC� J0 includes the complementary

term of Je.

This significant reduction during the first iterations can

be seen in the classification of all datasets and is achieved

through the proper tuning of the key parameters of the IWC

algorithm.

Then, the performances of IWC� J and IWC� J0 are

compared with respect to the classification of the selected

datasets. In this respect, their classification errors on test

datasets are compared and reported in Table 3. The

reported results are averaged over different iterations of

cross-validation.

The IWC� J0 outperforms IWC� J in terms of smaller

error in most of the selected datasets, and its performance
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Fig. 4 The evolutionary profiles of the fittest individuals in the

colony calculated by IWC� J and IWC� J0 as a function of the

number of iterations

Table 2 The key parameters in the IWC algorithm

Parameters Symbol Value

Number of initial plants P0 5

Maximum number of iterations itermax 200

Problem dimension D C � N

Maximum number of plants Pmax 30

Maximum number of seeds Smax 5

Minimum number of seeds Smin 0

Nonlinear modulation index n 3

Initial value of standard deviation rinitial 1

Final value of standard deviation rfinal 0.05
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is relatively close to IWC� J in other cases, as Table 2

attests. Thus, it can be concluded that IWC� J0 on average

outperforms IWC� J and will be selected for further study

in the rest of the paper. Hereafter, for the sake of sim-

plicity, IWC is substituted for IWC� J0.

4.2 IWC versus other classification methods

In this section, the performance of the IWC algorithm is

compared to standard well-known pattern classifiers with

respect to the classification of the selected datasets. This

comparative analysis is done by resorting to widely used

classifiers.

Firstly, among the Bayesian classifiers, the Naive Bayes

(NB) has been selected [69]. Then, a powerful data mining

tool, the decision tree (DT) method, is chosen [12]. Our

choice among neural networks is the MultiLayer Percep-

tron (MLP) [11]. A supervised-FCM (S-FCM) is selected

among fuzzy-based classifiers [8–10]. Linear discriminant

analysis (LDA) and quadratic discriminant analysis (QDA)

are selected among the statistical learning techniques [32,

43]. Among Kernel-based classifiers, the support vector

machines (SVM) has been chosen [14, 17]. The radial basis

function (RBF) has been used as a Kernel for the SVM.

The k-nearest neighbor (KNN) algorithm is chosen as a

well-known nonparametric technique from the computa-

tional geometry domain [5, 18]. Finally a Mamdani type

neuro-fuzzy (M-NF) classifier has been selected among the

rule-based techniques [57, 58].

The parameters of all classifiers, if any, are tuned

properly to guarantee a fair comparison. The classification

performances of different classifiers, at each iteration of

cross-validation, are collected and illustrated in box-plot

(see Fig. 5) for the Laryngeal dataset. The box-plot, in Fig.

5, presents the distributions of classification performances

(percentage of number of correctly classified patterns/total

number of patterns) for the patterns of the test subsets

resulting from the Laryngeal dataset by means of the ten-

fold stratified cross-validation procedure.

It is shown in box-plot (Fig. 5), that the average per-

formance achieved by the support vector machine (SVM)

is the highest and, conversely, the quadratic discriminant

analysis (QDA) has the lowest average performance among

all classifiers. MLP has the largest range of variation in the

performance values among all classifiers with respect to the

classification of the patterns of the Laryngeal dataset.

The IWC has the minimum range of variation in the per-

formance values and ranked fourth based on the average

performance among all classifiers. For this dataset,

the linear discriminant analysis and naive Bayes classifiers

outperform compared to IWC with respect to the classifi-

cation of the Laryngeal dataset and one ranked second and

third, respectively.

Table 4 reports the average performance (%) obtained

by different classifiers in a k-fold cross-validation scheme

on each dataset. Classification performance is calculated

with respect to the percentage of the correctly classified

patterns on the test subsets at each iteration of cross-

validation.

In the table, the entries highlighted in italic at each row

denote the highest performance achieved among all clas-

sifiers on that dataset, while the bold entries stand for the

lowest performance. A brief discussion on the achieved

results is outlined below.

IWC MLP KNN SVM NB LDA QDA DT S-FCM M-NF 
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Fig. 5 Box-plots representing the distribution of classification

performances (%) with respect to the patterns of the test subsets

resulting from the Laryngeal dataset by means of the tenfold stratified

cross-validation procedure. Solid circles represent the distribution of

classification performances for each classification method. The red

dashes stand for maximum and minimum performance values, and the

solid squares denote the average performance for each classifier. The

red crosses stand for 1 and 99 percentiles of the performance values

(color figure online)

Table 3 Comparison of averaged classification errors on test datasets

IWC � J
zfflfflfflfflffl}|fflfflfflfflffl{�etest

IWC � J0
zfflfflfflfflffl}|fflfflfflfflffl{�etest

Small size Gaussian 3.1 2.5

Medium size Gaussiana 0 0

Medium size Gaussianb 0 0

Large size Gaussian 0.38 0.3

Iris 0.29 0.3

Wine 1.7 1.7

Glass 23.4 21.1

Statlog (heart) 8.9 9.3

Cone-torus 13.5 12.1

3-Spirals 18.4 17.9

Weaning 14.6 13.7

Laryngeal 10.5 9
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It is shown in Table 4, that the IWC is on average rel-

atively effective with respect to the classification of the

selected datasets. Albeit invasive weed is an optimization

technique, it is competitive against other methods partic-

ularly tailored for classification tasks. IWC has the maxi-

mum average performance in the classification of five

datasets and most important is that the IWC has never been

ranked worst, i.e., the minimum average performance. As

seen in Table 4, the IWC along with SVM have the max-

imum number of highest ranks, due to maximum average

performance on the five classified datasets.

The performance of the invasive weed algorithm as an

optimization tool is highly tailored to its key parameters. The

IWC parameters are properly tuned; however, the problem

dimension D ¼ C � N has a huge impact on the classifica-

tion performance. It is assumed that the lower dimension may

lead to the higher performance. However, this assumption is

not fully supported by the attained results, as it is shown in

Table 4. Albeit the average performance of the IWC is

superior for the first five datasets, where the problem

dimension is small, the IWC average performance is not the

best for other two class problems, i.e., in cone-torus and 3-

spirals datasets. Conversely, the IWC outperforms other

techniques and is among the top 4 in the classification of the

high dimensional Laryngeal dataset.

It can be seen that there does not exist any direct relation

between the IWC performance and the size of dataset

N � m, since it shows the highest performance for the large

size Gaussian dataset and is among the highest ranks in

the classification of the Laryngeal dataset.

The IWC is ranked fourth and fifth with respect to

classification of low dimensional problems of cone-torus

and 3-spirals datasets, respectively, which is due to the fact

that these two datasets contain complex classification

decision boundaries. This limitation arises from the multi-

objective function of the IWC, which is class oriented and

merely constructed to optimize the positions of the

centroids in the future space. This behavior can be seen in

other centroid-oriented classifiers, such as S-FCM.

Indeed, the complex decision boundaries such as spirals

and rings cannot be easily spanned by centroid-oriented

decision functions since the class concept based on the

distance from a centroid cannot separate the surrounding

region correctly. More centroids or association of different

centroids to subclasses might be necessary to handle such a

situation. This work could also be extended to add another

term to the multi-objective function, which looks to be a

worthwhile direction for future research in order to over-

come this limitation.

The average performances of different classifiers with

respect to the classification of all datasets, as collected in

Table 4, are illustrated in the box-plot in Fig. 6. The box-

Table 4 Average performances

in a k-fold cross-validation with

respect to the percentage of the

correctly classified patterns on

each dataset

IWC MLP KNN SVM NB LDA QDA DT S-FCM M-NF

Small size Gaussian 97.5 85.7 96.7 90.0 90.0 86.7 86.7 76.7 93.4 91.7

Medium size Gaussiana 100 96.4 98.3 100 98.3 100 98.3 96.7 95.7 94.8

Medium size Gaussianb 100 100 99.2 99.2 98.3 98.3 98.3 98.3 99.2 100

Large size Gaussian 99.7 99.7 99.6 99.6 99.6 99.7 99.7 99.7 99.6 99.6

Iris 99.7 98.0 97.3 97.3 98.0 98.7 98.0 96.7 94.3 99.7

Wine 98.3 99.4 98.9 91.5 98.3 100 100 94.9 92.3 94.6

Glass 78.9 84.1 89.7 90.1 76.7 86.4 77.0 82.6 82.3 83.9

Statlog (heart) 90.7 91.7 92.2 98.1 93.3 92.9 93.3 89.3 85.7 94.5

Cone-torus 87.9 81.8 95.0 90.5 85.8 86.5 85.8 91.8 80.1 83.3

3-Spirals 82.1 84.7 100 100 73.0 67.3 71.8 100 55.7 86.5

Weaning 86.3 93.5 98.3 75.4 96.0 91.7 94.0 92.7 80.1 95.0

Laryngeal 91.0 82.7 90.7 96.9 91.5 92.3 80.5 85.0 90.5 88.9

IWC MLP KNN SVM NB LDA QDA DT S-FCM M-NF 
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Fig. 6 Box-plots representing the distribution of average perfor-

mances or accuracy on each dataset. Solid circles represent the

distribution of average performances or accuracy on each dataset. The

red dashes stand for maximum and minimum values, and the solid

squares denote the average of average performances on all datasets.

The red crosses stand for 1 and 99 percentiles (color figure online)
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plot in Fig. 6 illustrates the distributions of the average

performances of different classifiers over the k-fold cross-

validation with respect to classification of each dataset.

There exist statistical differences between the distribu-

tions of the average performances or accuracies. The dis-

tribution of the average performances on different datasets

shows the largest variation for the S-FCM. KNN has the

minimum range of variation that implies the steadiest

performance on all datasets among other classifiers. The

highest median corresponds to the KNN classifier, which

shows that the KNN classifier has a superior average per-

formance on the majority of the datasets.

Finally, the classifiers are ranked based on the average

over the average performances on each dataset, which are

shown by solid squares in the box-plots of Fig. 6 for each

classifier. These average values over the average perfor-

mances are reported in the first row of Table 5.

The classifiers are finally ranked based on these values

in order to present their efficiency in the classification of

all selected datasets. The final rank is reported in the sec-

ond row of Table 5. The KNN classifier, with the average

value of 0.963, is ranked first in the classification of all

selected datasets among all other classifiers, and is high-

lighted in italic in the Table. KNN is followed by SVM and

M-NF as second and third ranks, respectively. IWC is

ranked fourth, with a superior average performance of

0.926, over all selected datasets, which is pretty close to the

average performance of the top three classifiers. The final

rank is followed by other classifiers, such as DT, LDA, NB,

MLP and QDA, with total accuracy over 0.9. The worst

rank, S-FCM, is the only classifier with total accuracy less

than 0.9 and is highlighted in bold in Table 5.

Albeit SVM achieves maximum performance with

respect to the classification of the five datasets (Table 4),

which is the highest record among all classifiers, it is ranked

as the second best classifier after KNN (Table 5). The dis-

tribution of the values of the average over the average

performances on all datasets, box-plots in Fig. 6, reveals a

larger range of variation for SVM compared to KNN. This

is due to the weak performance of SVM with respect to the

classification of the Weaning dataset, that leads to a lower

value of the final average for SVM comparing to KNN.

Even though methods specifically tailored for classifi-

cation, such as KNN and SVM, show a superior perfor-

mance in classification of all selected datasets on average,

the IWC performance is still comparable with the top two

classifiers and ranked fourth among all selected classifiers.

The time needed for these classifiers to be trained

depends on the problem dimension and varies in a range

from a few seconds up to a few minutes. However,

the IWC has an acceptable rank in terms of the training

time among all other classifiers.

4.3 Classification with noisy data

In this section, the performance of the IWC algorithm is

compared to standard well-known pattern classifiers (i.e.,

those used in Sect. 4.2) with respect to the classification of

noisy datasets. A summary of the noisy datasets charac-

teristics is reported in Table 6.

Firstly, we focus on the datasets that contain some noisy

features such as: Difficult Doughnut, Easy Doughnut and

Four Gaussian [38, 40]. All these three datasets contain 10

noisy features Nn. Then, different types of 2-dimensional

noisy datasets are selected. The easiest is the Noisy Lines

dataset, which is available in [40].

The noisy datasets with more complex decision bound-

aries are the 2-Noisy Spirals and the Noisy Pinwheels

datasets, with different number of classes and complexity.

The 2-Noisy Spirals dataset contains 2,000 bi-dimensional

patterns of two classes as shown in Fig. 7a. The Noisy

Pinwheel datasets with two, three, four and five classes are

shown in Fig. 7b–f, respectively. There were 1,000 data

points for each class in each dataset (see Table 6). These

pinwheels are merely Gaussian datasets that have been

stretched and rotated [1]. Two different 3-Class Noisy

Pinwheel datasets are used in this experiment. The ‘3-Class

Noisy PinwheelT ’ stands for the one with more twisted arms.

Table 7 reports the average performance (%) obtained

by different classifiers in a tenfold cross-validation scheme

on each noisy dataset. In Table 7, the entries highlighted in

italic at each row denote the highest performance achieved

among all classifiers on that noisy dataset, while the bold

entries stand for the lowest performance. A brief discussion

on the obtained results on the noisy datasets is outlined

below.

As shown in Table 7, the IWC is relatively effective

with respect to the classification of the noisy datasets. The

IWC is stable and ranked around middle among all other

classifiers with respect to each noisy dataset (see each row

of the Table 7). The IWC has never been ranked worst, i.e.,

the minimum average performance in this experiment.

As seen in Table 7, KNN has the maximum number of

highest ranks, due to maximum average performance on the

Table 5 Final rank based on

the average over the average

performance values

IWC MLP KNN SVM NB LDA QDA DT S-FCM M-NF

Average 0.926 0.914 0.963 0.940 0.915 0.917 0.902 0.920 0.874 0.927

Rank 4 8 1 2 7 6 9 5 10 3
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seven noisy datasets. Conversely, S-FCM has the maximum

number of lowest ranks on the last six noisy datasets.

Albeit SVM achieves reasonable performances with

respect to the classification of the six noisy datasets (Table

7), and it is ranked as the ninth classifier (Table 8), due to

its weak performance with respect to the datasets with

noisy features, Nn [ 0 (first three rows in Tables 6 and 7).

DT achieves a good performance in almost all noisy

datasets. It ranked first among all other classifiers on the

classification of the noisy datasets. DT even outperforms

KNN that ranked first on the seven noisy datasets due to its

stable performance on all noisy datasets, especially on the

Four Gaussian dataset (third row in Table 7).

These average values over the average performances are

reported in the first row of Table 8. The classifiers are

finally ranked based on these values in order to present

their performance in the classification of all noisy datasets.

The final rank is reported in the second row of Table 8. The

DT classifier, with the average value of 0.994, is ranked

first in all noisy experiments among all other classifiers,

and is highlighted in italic in the Table 8.

DT is followed by KNN and NB as second and third

ranks, respectively. IWC is ranked fourth, with a superior

average performance of 0.948 over all the noisy datasets.

The final rank is followed by other classifiers, such as the

QDA, MLP, M-NF and LDA, with a total accuracy over

0.9. The lowest ranks, the SVM and S-FCM are the only

classifiers with total accuracy less than 0.9.

The average performances of different classifiers with

respect to the classification of all datasets (i.e., the 13

datasets of the experiments in Sect. 4.2 and the 10 noisy

datasets of the experiments in Sect. 4.3), as collected in

Tables 4 and 7, are illustrated in the box-plot in Fig. 8. The

box-plot in Fig. 8 shows the distributions of the average

performances of different classifiers on the k-fold cross-

validation with respect to the classification performance in

all experiments.

In conclusion, the classifiers are ranked based on the

average over the average performances on each dataset (all

22 datasets), which are shown by solid squares in the box-

plots of Fig. 8 for each classification method. These aver-

age values over the all average performances are reported

in the first row of Table 9. The final rank over all 22

datasets is reported in the second row of Table 9.

The KNN classifier, with the average value of 0.976, is

ranked first in the classification of all the 22 datasets among

all other classifiers. KNN is followed by DT as second

rank. IWC is ranked third, with superior average perfor-

mance (0.936) over all 22 datasets. The final rank over all

the 22 datasets is followed by other classifiers, such as

the NB, MLP, M-NF, QDA and LDA, with total accuracy

over 0.9. The worst ranks, the SVM and S-FCM have a

total accuracy less than 0.9.

The box-plot in Fig. 8 reveals a large range of variation

for SVM and S-FCM compared to KNN. The IWC has an

acceptable range of variation (0.211), which leads to a

stable performance over all the datasets including the noisy

experiments.

5 Discussion and conclusion

In this paper, an invasive weed optimization technique has

been adapted to perform as a pattern classifier, called

the invasive weed classification (IWC). The classification

task was formulated as a multi-objective optimization

problem, for which three objective functions were defined

in this work. However, the proposed IWC is mainly a

Table 6 Description of the noisy datasets used in the experiments

C N m mc Nn

Difficult doughnut 2 12 400 200–200 10

Easy doughnut 2 12 400 200–200 10

Four Gaussian 4 12 800 200–200–200–200 10

Noisy lines 2 2 200 100–100 –

2-Noisy spirals 2 2 2,000 1,000–1,000 –

2-Class noisy

pinwheel

2 2 2,000 1,000–1,000 –

3-Class noisy

pinwheel

3 2 3,000 1,000–1,000–1,000 –

3-Class noisy

pinwheelT

3 2 3,000 1,000–1,000–1,000 –

4-Class noisy

pinwheel

4 2 4,000 1,000–1,000–1,000–1,000 –

5-Class noisy

pinwheel

5 2 5,000 1,000–1,000–

1,000–1,000–1,000

–
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Fig. 7 2-Noisy spirals and noisy pinwheels datasets
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centroid-oriented classifier: it mainly assigns the positions

of the optimal plants to the class centroids. Initial seeds are

being randomly spread onto the feature space and their

fitness values are calculated with a distance-based function.

Those plants with minimum fitness are selected as class

centroids and become reproductive iteratively until the

optimization goal has been met.

Another term has been devised in the multi-objective

function to avoid overtraining.

Different versions of the IWC are firstly compared each

other and then against other well-known classifiers. For this

comparative analysis, 22 different datasets have been

selected for the classification task, different in terms of

size, complexity of their decision boundaries and noise

level. The attained results and careful analysis show that

the IWC is an efficient classifier, which performs well

when compared against other well-known classifiers.

It is shown that the IWC outperforms other classifiers

where the decision boundaries can be spanned based on the

distance from the centroids, but its performance is slightly

reduced when classifying complex decision boundaries.

To overcome this limitation, the multi-objective function

could be extended by adding a non-centroid function, which

looks to be a worthwhile direction for future research.
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Fig. 8 Box-plots representing the distribution of average perfor-

mances on each dataset (i.e., including the 12 datasets of the

experiments in Sect. 4.2 and the 10 noisy datasets of the experiments

in Sect. 4.3). Solid circles represent the distribution of average

performances on each dataset. The red dashes stand for maximum and

minimum values, and the solid squares denote the average of average

performances on all datasets. The red crosses stand for 1 and 99

percentiles (color figure online)

Table 7 Average performances

in a tenfold cross-validation

with respect to the percentage of

the correctly classified patterns

on each noisy dataset

IWC MLP KNN SVM NB LDA QDA DT S-FCM M-NF

Difficult doughnut 94.0 97.8 98.5 57.3 99.3 74.9 97.5 99.0 90.0 91.5

Easy doughnut 97.8 99.0 99.8 56.5 99.0 77.2 98.3 99.3 91.7 93.3

Four Gaussian 99.5 96.1 94.4 46.6 99.6 99.6 99.6 99.4 96.7 96.1

Noisy lines 100 99.5 100 100 100 100 100 100 99.5 100

2-Noisy spirals 79.1 86.9 100 81.1 73.0 79.4 70.1 98.6 53.1 79.5

2-Class noisy pinwheel 94.5 94.7 99.9 99.7 96.3 96.9 96.2 99.6 67.5 94.3

3-Class noisy pinwheel 99.5 97.2 99.8 99.7 99.7 99.5 99.7 99.7 96.1 97.0

3-Class noisy pinwheelT 90.0 92.2 99.5 99.7 88.1 89.4 87.5 99.4 57.1 81.07

4-Class noisy pinwheel 94.5 97.1 100 100 99.0 99.1 99.8 99.9 61.8 98.5

5-Class noisy pinwheel 99.4 86.1 99.8 99.8 99.4 99.0 99.6 99.7 74.5 95.9

Table 8 Final rank based on

the average over the average

performance values on

the noisy datasets

IWC MLP KNN SVM NB LDA QDA DT S-FCM M-NF

Average 0.9483 0.9465 0.9915 0.8403 0.9532 0.9151 0.9482 0.9945 0.7880 0.9271

Rank 4 6 2 9 3 8 5 1 10 7

Table 9 Final rank based on

the average over the all average

performance values

IWC MLP KNN SVM NB LDA QDA DT S-FCM M-NF

Average 0.9365 0.9291 0.9761 0.8949 0.9327 0.9161 0.9234 0.9540 0.8349 0.9271

Rank 3 5 1 9 4 8 7 2 10 6
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decision support: handbook of applications and advances of

rough sets theory. Theory and Decision Library, vol 11. Springer,

Netherlands, pp 3–18

29. Hajimirsadeghi H, Ghazanfari A, Rahimi-Kian A, Lucas C (2009)

Cooperative coevolutionary invasive weed optimization and its

application to nash equilibrium search in electricity markets. In:

World congress on nature and biologically inspired computing,

NABIC, pp 1532–1535

30. Hajimirsadeghi H, Lucas C (2009) A hybrid iwo/pso algorithm for

fast and global optimization. In: IEEE Eurocon, pp 1964–1971

31. Hansen L, Salamon P (1990) Neural network ensembles. IEEE

Trans Pattern Anal Mach Intell 12(10):993–1001

32. Hastie T, Tibshirani R, Friedman J (2008) The elements of sta-

tistical learning. Springer, Berlin, New York

33. He X, Wang Z, Jin C, Zheng Y, Xue X (2012) A simplified multi-

class support vector machine with reduced dual optimization.

Pattern Recogn Lett 33(1):71–82

34. Karimkashi S, Kishk AA (2010) Invasive weed optimization and

its features in electromagnetics. IEEE Trans Antennas Propag

58(4):1269–1278

35. Kittler J, Hatef M, Duin R, Mates J (1998) On combining clas-

sifiers. IEEE Trans Pattern Anal Mach Intell 20(3):226–239

36. Kohavi R (1995) A study of cross-validation and bootstrap for

accuracy estimation and model selection. In: Proceedings of

the 14th international joint conference on artificial intelligence,

vol 2, IJCAI 95Morgan Kaufmann, Montréal Québec, Canada,
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